





## 6720-556 JUNE 2018

## Level 3 Advanced Technical Extended Diploma in Constructing the Built Environment (Civil Engineering) (1080)

Level 3 Constructing the Built Environment – Theory exam

| If provided, stick your candidate barcode label here.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |      |     |        |       | Friday 22 June 2018<br>09:30 – 12:30 |   |  |  |  |  |  |  |  |  |  |  |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----|--------|-------|--------------------------------------|---|--|--|--|--|--|--|--|--|--|--|--|--|
| Candid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ateı | nam | ie (fi | irst, | last                                 | ) |  |  |  |  |  |  |  |  |  |  |  |  |
| First                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |      |     |        |       |                                      |   |  |  |  |  |  |  |  |  |  |  |  |  |
| Last                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |      |     |        |       |                                      |   |  |  |  |  |  |  |  |  |  |  |  |  |
| Candidate enrolment number Date of birth (DDMMYYYY) Gender (M/F)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |      |     |        |       |                                      |   |  |  |  |  |  |  |  |  |  |  |  |  |
| <ul> <li>Assessment date (DDMMYYYY) Centre number Candidate signature and declaration*</li> <li>If any additional answer sheets are used, enter the additional number of pages in this box.</li> <li>Please ensure that you <b>staple</b> additional answer sheets to the <b>back</b> of this answer booklet, clearly labelling them with your full name, enrolment number, centre number</li> </ul>                                                                                                                                                                               |      |     |        |       |                                      |   |  |  |  |  |  |  |  |  |  |  |  |  |
| <ul> <li>booklet, clearly labelling them with your full name, enrolment number, centre number and qualification number in BLOCK CAPITALS.</li> <li>All candidates need to use a black/blue pen. Do not use a pencil or gel pen.</li> <li>If provided with source documents, these documents will not be returned to City &amp; Guilds, and will be shredded. Do not write on the source documents.</li> <li>*I declare that I had no prior knowledge of the questions in this assessment and that I will not divulge to any person any information about the questions.</li> </ul> |      |     |        |       |                                      |   |  |  |  |  |  |  |  |  |  |  |  |  |

## You should have the following for this examination

- non-programmable scientific calculator
- a pen with blue or black ink
- a pencil and ruler

## **General instructions**

This question paper is the property of City and Guilds of London and should be returned after the examination.

- This examination contains **25** questions. Answer **all** questions.
  - Answer the questions in the space provided.
  - The marks for **each** question are shown in brackets.
- Show **all** calculations.

(2 marks)

(2 marks)

- 1 Identify **two** of the laws of static equilibrium used to determine beam reactions.
- 2 For the cantilever beam shown in Figure 1.

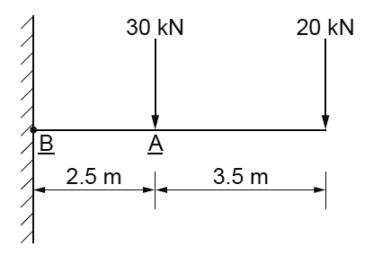



Figure 1

- a) Determine the bending moment values at points A and B. (2 marks)
- b) Produce a bending moment diagram to represent the loading.

| (2 ma |
|-------|
|       |
|       |
| (4 ma |
|       |
|       |
|       |
|       |
|       |
| (1 m  |
| (1 m  |
|       |

| a)  | taining wall retains water of density 10 kN/m <sup>3</sup> . The height of the wall is 4.5 m.  Determine the pressure per linear metre at the base of the wall. | (1 mai  |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| b)  | Calculate the magnitude of the total force per metre run (F <sub>h</sub> ) acting on the wall.                                                                  | (2 mark |
| c)  | Calculate the height above the base of the wall at which the resultant force will act.                                                                          | (1 mai  |
| Nam | ne <b>two</b> methods used to determine forces in statically determinate frameworks.                                                                            | (2 mark |
|     | ne <b>two</b> temporary methods of groundwater control that can be used on struction sites.                                                                     | (2 mark |
| Nam | ne <b>two</b> items of earthworks plant used on construction sites.                                                                                             | (2 mark |
|     | cribe the purpose of a contraction joint used in rigid pavements.                                                                                               |         |

| 11 | State <b>three</b> duties under the Health & Safety at Work Act (HASWA) that <b>employees</b> must follow. | (3 marks |
|----|------------------------------------------------------------------------------------------------------------|----------|
|    |                                                                                                            |          |
|    |                                                                                                            |          |
| 2  | Explain the advantages of using a caisson as a method of deep excavation for                               |          |
| _  | bridge piers.                                                                                              | (3 marks |
|    |                                                                                                            |          |
|    |                                                                                                            |          |
| 3  | A retail company is planning to build a large new distribution warehouse.                                  |          |
|    | Explain why a steel portal frame may be considered the <b>best</b> design option for the building.         | (3 mark  |
|    |                                                                                                            |          |
|    |                                                                                                            |          |
|    |                                                                                                            |          |

| 14 | A developer is keen to incorporate a sustainable urban drainage system (SUDS) into a new eco-village development and is seeking local public opinion on the design of the SUDS. |           |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
|    | Evaluate the design considerations the local public may require the developer to consider.                                                                                      | (5 marks) |
|    |                                                                                                                                                                                 | -         |
|    |                                                                                                                                                                                 | -         |
|    |                                                                                                                                                                                 | -         |
|    |                                                                                                                                                                                 | -         |
|    |                                                                                                                                                                                 | -         |
| 15 | Identify <b>two</b> methods used for the manual production of 3D drawings.                                                                                                      | (2 marks) |
| 16 | Describe what is meant by the term 'COBie'.                                                                                                                                     | (4 marks) |
|    |                                                                                                                                                                                 | -         |
|    |                                                                                                                                                                                 | -         |
| 47 |                                                                                                                                                                                 | -         |
| 17 | Identify <b>two</b> CAD software packages <b>most</b> appropriate to produce 3D models of a building.                                                                           | (2 marks) |

| ine | 2018 | 4 |
|-----|------|---|
|     |      |   |

| 18 | Exp  | lain the challenges for BIM implementation.                                    | (4 marks) |
|----|------|--------------------------------------------------------------------------------|-----------|
|    |      |                                                                                | -         |
|    |      |                                                                                | -         |
|    |      |                                                                                | -         |
|    |      |                                                                                | -         |
|    |      |                                                                                | -         |
|    |      |                                                                                | -         |
| 19 | Sun  | nmarise the implications for the adoption of a totally digital drawing office. | (4 marks) |
|    |      |                                                                                | -         |
|    |      |                                                                                | -         |
|    |      |                                                                                |           |
|    |      |                                                                                | -         |
|    |      |                                                                                |           |
|    |      |                                                                                | -         |
| 20 | Stat | te the calculus technique that can be used to determine                        | -         |
| 20 | a)   | the area under a curve                                                         | (1 mark)  |
|    | b)   | the maximum and minimum turning points of a curve.                             | (1 mark)  |
|    | IJ   | The maximum and minimum turning points of a curve.                             | (Tillark) |

| 21 | Concrete cube samples have been tested for strength on two separate construction sites. Cumulative frequency diagrams would normally be produced to show the test results taken from each site. |                                                                                                                                                                                 |           |  |  |  |  |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|--|--|--|--|
|    |                                                                                                                                                                                                 | te which mathematical measure of dispersion, of a typical cumulative frequency gram, should be used to identify the following.  The site with the concrete of greater strength. | (1 mark)  |  |  |  |  |
|    | b)                                                                                                                                                                                              | The site with the least variance of strength between the samples of concrete.                                                                                                   | (1 mark)  |  |  |  |  |
| 22 |                                                                                                                                                                                                 | cribe, with the aid of a diagram, the meaning of the term 'normal distribution' as d in statistical analysis techniques.                                                        | (2 marks) |  |  |  |  |
|    |                                                                                                                                                                                                 |                                                                                                                                                                                 |           |  |  |  |  |
|    |                                                                                                                                                                                                 |                                                                                                                                                                                 |           |  |  |  |  |

23 For the beam section shown in Figure 2.

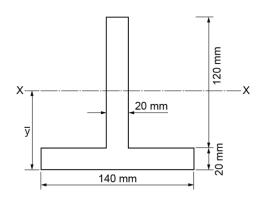



Figure 2

| a) | Calculate, using the first moment of area principles, the position of the centroidal |           |
|----|--------------------------------------------------------------------------------------|-----------|
|    | axis X-X.                                                                            | (2 marks) |
|    |                                                                                      |           |

b) Calculate the second moment of area (moment of inertia) about the X-X axis. You may use the table below to complete your calculations.

(5 marks)

Given 
$$y = \frac{\sum (A_1y_1 + A_2y_2)}{\sum (A_1 + A_2)}$$
  $I_{CG} = bd^3/12$   $I_{XX} = I_{CG} + Ac^2$ 

| Part  | A<br>mm <sup>2</sup> | $\frac{bd^3}{12}$ | С | Ac <sup>2</sup> |
|-------|----------------------|-------------------|---|-----------------|
| 1     |                      |                   |   |                 |
| 2     |                      |                   |   |                 |
| Total |                      |                   |   |                 |

- 24 Differentiate with respect to x
  - a)  $y = 3x^4$

(1 mark)

b)  $y = 5x^3 - 2x^2 + 10$ 

(2 marks)

- A property developer has planning permission to build a large two-storey steel frame sports complex. The new building will be rectangular and have plan dimensions of  $80\,\mathrm{m}\,\mathrm{x}\,20\,\mathrm{m}$ .
  - a) Explain how the bending theory equation is used and applied to design steel beams.

(3 marks)

b) Produce a sketch or diagram showing elements of the foundation, columns, beams and floor sections of the steel frame.

(3 marks)



| steel frame. | (12 mark |
|--------------|----------|
|              |          |
|              |          |
|              |          |
|              |          |
|              |          |
|              |          |
|              |          |
|              |          |
|              |          |
|              |          |
|              |          |
|              |          |
|              |          |
|              |          |
|              |          |
|              |          |
|              |          |
|              |          |
|              |          |
|              |          |
|              |          |
|              |          |
|              |          |
|              |          |
|              |          |
|              |          |
|              |          |
|              |          |

