
Level 3 Develop designs and test
software components
(7266/7267-301)
e-Quals
Assignment guide for Candidates
Assignment C

www.cityandguilds.com/e-quals07
October 2008
Version 1.0

About City & Guilds
City & Guilds is the UK’s leading provider of vocational qualifications, offering over 500 awards
across a wide range of industries, and progressing from entry level to the highest levels of
professional achievement. With over 8500 centres in 100 countries, City & Guilds is recognised by
employers worldwide for providing qualifications that offer proof of the skills they need to get the
job done.

City & Guilds Group
The City & Guilds Group includes City & Guilds, ILM (the Institute of Leadership & Management)
which provides management qualifications, learning materials and membership services, NPTC
which offers land-based qualifications and membership services, and HAB (the Hospitality Awarding
Body). City & Guilds also manages the Engineering Council Examinations on behalf of the
Engineering Council.

Equal opportunities
City & Guilds fully supports the principle of equal opportunities and we are committed to satisfying
this principle in all our activities and published material. A copy of our equal opportunities policy
statement is available on the City & Guilds website.

Copyright
The content of this document is, unless otherwise indicated, © The City and Guilds of London
Institute 2008 and may not be copied, reproduced or distributed without prior written consent.

However, approved City & Guilds centres and learners studying for City & Guilds qualifications may
photocopy this document free of charge and/or include a locked PDF version of it on centre
intranets on the following conditions:

• centre staff may copy the material only for the purpose of teaching learners working towards a
City & Guilds qualification, or for internal administration purposes

• learners may copy the material only for their own use when working towards a City & Guilds
qualification

The Standard Copying Conditions on the City & Guilds website also apply.

Please note: National Occupational Standards are not © The City and Guilds of London Institute.
Please check the conditions upon which they may be copied with the relevant Sector Skills Council.

Publications
City & Guilds publications are available on the City & Guilds website or from our Publications Sales
department at the address below or by telephoning +44 (0)20 7294 2850 or faxing +44 (0)20 7294
3387.

Every effort has been made to ensure that the information contained in this publication is true and
correct at the time of going to press. However, City & Guilds’ products and services are subject to
continuous development and improvement and the right is reserved to change products and
services from time to time. City & Guilds cannot accept liability for loss or damage arising from the
use of information in this publication.

City & Guilds
1 Giltspur Street
London EC1A 9DD
T +44 (0)20 7294 2800 www.cityandguilds.com
F +44 (0)20 7294 2400 learnersupport@cityandguilds.com

Level 3 Develop designs and test software components (7266/7267-301) 1

Contents

Level 3 Develop designs and test software components (7266/7267-301)

Introduction – Information for Candidates 2
Candidate instructions 3
Appendix A 7

Level 3 Develop designs and test software components (7266/7267-301) 2

Level 3 Develop designs and test software components
(7266/7267-301) Assignment C
Introduction – Information for Candidates

About this document
This assignment comprises part of the assessment for Level 3 Develop designs and test software
components (7266/7267-301).

Health and safety
You are asked to consider the importance of safe working practices at all times.

You are responsible for maintaining the safety of others as well as your own. Anyone behaving in an
unsafe fashion will be stopped and a suitable warning given. You will not be allowed to continue
with an assignment if you compromise any of the Health and Safety requirements. This may seem
rather strict but, apart from the potentially unpleasant consequences, you must acquire the habits
required for the workplace.

Time allowance
The recommended time allowance for this assignment is 6 hours.

Level 3 Develop designs and test software components (7266/7267-301) 3

Level 3 Develop designs and test software components
(7266/7267-301)
Candidate instructions

Time allowance: 6 hours

Assignment set up:

This assignment is made up of three tasks

Task A - interpret documentation and design software components from a given specification
Task B - test the supplied software
Task C - provide guidance for a specified Health and Safety issue

Scenario

You work as a software developer for Complex Solutions. You have been asked to work as a team
member to help design and test a prototype for a new compiler that the company are developing.
The compiler is to compile the source code from a new programming language and convert the
source code so that the software can be run via the Internet on any computer. The specification for
the compiler is in Appendix A.

Task A
In this task you are required to design part of the software for the prototype compiler.
The following Event/Action chart has been provided by your team leader.

Event/Action chart

Event/function/
procedure

Parameters Action Function/
procedure calls

private void
mnuOpen

 Opens the source code file
and reads and displays the
data in the editor window

private void
mnuSave

 Saves the source code file

private void
mnuSaveAs

 Saves the source code file
with the entered filename

private void
mnuClose

 Prompts to save source code
file if it has changed and then
closes the file

Level 3 Develop designs and test software components (7266/7267-301) 4

private void
mnuExit

 Prompts to save source code
file if it has changed and then
exits the software

private void
mnuCompile

 Compiles the source code Init
InitResWords
ReadLines
CheckSyntax

private void Init Initialises arrays

private void
InitResWords

 Sets up the reserved words
in the symbol table

private void
ReadLines

 Reads the lines in the source
code file

GetWord
CheckValidIdent
HashSymbol

private boolean
GetWord

by value:
integer LineCounter -
contains source code
line number

by reference:
char array Line – the
input source code line
boolean Comment –
contains true if a
comment spans more
than one line
otherwise false
char array Word – the
word found in a line

Finds a word or string in the
passed Line parameter
Removes comment text
Replaces a comma with a
space
Outputs error message 003
or 004 if an error found
Returns in the Comment
parameter true if a comment
spans more than one line or
false
Returns in the Word
parameter the word or string
found or an empty string
Returns in the Line
parameter the input line with
the word, string or comment
removed or an empty string
Returns a boolean value true
if no error found, false if an
error found

private boolean
CheckValidIdent

by value:
integer LineCounter –
contains source code
line number
char array Word –
holds the identifier to
be checked

Checks that the Word
parameter passed is a valid
identifier ie contains valid
letters a..z or A..Z or digits
0..9 but does not have a digit
in the first position
Outputs error message 005 if
an error found
Returns a boolean value true
if no error found, false if an
error found

private void
HashSymbol

by value
char array InWord –
holds the identifier to
be hashed into the
symbol table
integer LineCounter -

Hashes the identifier into the
symbol table and inserts data
into the lexical records

CalcHash

Level 3 Develop designs and test software components (7266/7267-301) 5

contains source code
line number

private integer
CalcHash

by value WordIn Calculates the hash value for
the data in WordIn and
returns the hashed value

private void
CheckSynTax

 Works through the symbol
table checking the syntax of
the records against the
syntax list for each
instruction

private void
mnuRun

 Runs the program using the
data in the lexical records

1 Produce the design language algorithms for the following functions/procedures:

• mnuClose

• CheckValidIdent

• GetWord.

2 Make sure that error messages as specified in the specification are output to the Output
window if an error occurs.

3 Make sure that the design follows the criteria listed below:

• the design conforms to the specification

• the program design language clearly shows
o variable names and data types,
o argument/parameter names and data types,
o return value data types

• the design is consistent and complete

• quality criteria are met by the design.

Task B
The program has now been developed. In this task you are required to carry out testing of the
software.

1 Produce a plan for carrying out the testing and analysis of results using a PERT or Gantt chart.

2 Prepare a test plan to carry out functional testing of the software. The test plan should

contain test numbers, date, purpose of test and expected outputs for stated inputs.

3 Prepare the test data to be used with the test plan. For testing purposes the size of the array

for data storage is limited, in the program provided, to 100.

4 Use the test plan and test data to carry out the testing and record the test results in a test log.

5 Provide evidence of testing eg printout of source code files and screen prints.

6 Use the test log to produce a report which identifies any errors found and comments on the
success of the test against the original software specification.

Level 3 Develop designs and test software components (7266/7267-301) 6

Task C
In this task you are required to provide a risk assessment and provide guidance to colleagues.

1 Prepare a brief report about Repetitive Strain Injury which would be suitable to be sent to
colleagues to inform them of the risk. Include two measures which can be taken to help
prevent RSI.

END OF ASSIGNMENT

Note

• Candidates should produce the following for their assessor:

• program design language algorithms for the functions/procedures mnuClose,
CheckValidIdent and GetWord

• planning chart (PERT or Gantt)

• test plan

• test data

• test log and evidence of testing

• report on the test results

• report on RSI

• Ensure that your name is on all documentation

• If the assignment is taken over more than one period, all paperwork must be returned to the
test supervisor at the end of each sitting.

Level 3 Develop designs and test software components (7266/7267-301) 7

Appendix A

Specification
A compiler is required for a new programming language called Intermediate Computer
Programming Language (ICPL) which is under development. The new programming language is
intended for use on the Internet. The instructions are compiled into tokens and it is intended that
the program can then be run on any computer.

The screen layout for the software is shown below.

The File menu contains the menu options - Open, Save, Save As, Close and Exit.
The Debug menu contains the menu options – Compile and Run.
The source code files that are input and output by the compiler have the extension .cpl
There is an Editor window and an Output window. The source code for a program can be entered
into the Editor window and saved or an existing file can be read from disk.
When the Compile menu option is selected the source code is compiled and the compiler checks
each line word by word. Comment lines are removed and any comma found is replaced by a space.
For string data the start and end quote are checked for. If an error is found an error message is
output. A lexical analysis is done to check that identifier names are valid. No entry is made in the
symbol table or lexical record if an error is found. When the lexical analysis is complete, if no errors
are found the compiler performs a syntax analysis. If any errors are found in the syntax of the code
an error message is output.
The Run menu option will not run the program unless a compilation has been performed
successfully first.

Level 3 Develop designs and test software components (7266/7267-301) 8

Instruction set

The ICPL contains the following instruction set which is used to create a program.

ZERO variablename
Sets a specified variable to 0 and continues to the next instruction.

INC variablename
increases the specified variable by 1 and continues to the next instruction.

DEC variablename,label
This is a conditional instruction. It checks the contents of the specified variable. If the contents of
the specified variable are not zero then the contents of the specified variable are decreased by 1
and the next instruction is executed. If the specified variable contains zero then a jump is made to
the specified label. This instruction is useful for executing and terminating a loop.

MOV variablename, variablename
This instruction moves the value in the first specified variable to the second specified variable and
then continues to the next instruction. This instruction is useful for saving values in a variable
before executing a loop.

JMP label
This instruction is an unconditional jump to a specified label in the program. This allows the order in
which instructions are executed to be altered.

HALT
This instruction signals the end of the program instructions.

{ text }
This format is used to insert comments into the program. Multiple line comments can be used.

INPUT variablename
This instruction inputs a numeric integer in the range 0 to 500 into the specified variable and
continues to the next instruction.

OUTPUT variablename
This instruction outputs the contents of the specified variable and continues to the next instruction.
This is useful to allow calculated results to be output.

PRINT 'text'
This instruction outputs the text contained within the single quotes and then continues to the next
instruction. It is used to make the output values meaningful.

NEWLINE
This instruction outputs a newline and continues to the next instruction. It is required so that data is
not output on a continuous line.

LABEL:
This instruction is used for a label that can be branched to by the conditional and unconditional
branch instructions (DEC and JMP).

Level 3 Develop designs and test software components (7266/7267-301) 9

Error messages
Error messages are displayed in the Output window.

Error Code Error message

001: Cannot open file filename

002: Cannot save file

003: 2 begin comment symbols, line no linenumber

004: No end QUOTE found, line no linenumber

005: Invalid identifier name name, line no linenumber

006:

Line input
Syntax Error: Invalid label, line no linenumber

007:

Line input
Syntax Error: Reserved word mis-spelt or missing, line no
linenumber

008:

Line input
Syntax Error: String expected, line no linenumber

009:

Line input
Syntax Error: Identifier expected, line no linenumber

010:

Line input
Syntax Error: Label name expected, line no linenumber

011: No end comment symbol found

012: Invalid data entered

013: Must have successful compilation first

014: Cannot run, file not open

015: Syntax errors found: Compilation terminated

016: Lexical Analysis errors found: Compilation terminated

Note that when the program is run one syntax error can cause several other syntax errors to be
signalled. This is because the compiler becomes out of step with the start of an instruction and is a
normal result for a syntax analysis. Also the line number may point to the line below where the
actual error occurred.

Level 3 Develop designs and test software components (7266/7267-301) 10

BNF Definition

<program> ::= BEGIN<vsep><statementseq><vsep>END

<statementseq> ::= <statement>|<statement><vsep><statementseq>

<statement> ::= <sep><stat>|<sep><label>:<spaces><stat>|<sep><label>:

<label> ::= <letter>|<label><letter>|<label><digit>

<letter> ::= A|B|C...............Y|Z|a|b|c.........y|z

<digit> ::= 0|1|2|3|4|5|6|7|8|9

<sep> ::= <spaces>|<null>|<tab>

<null> ::=

<stat> ::= <IOstat>|<calcstat>|<haltstat>

<haltstat> ::= HALT

<IOstat> ::= <INstat>|<OUTVstat>|<OUTPstat>|<NEWLstat>

<calcstat> ::= <zerostat>|<incstat>|<jmpstat>|<movstat>|<decstat>

<INstat> ::= INPUT<spaces><varname>

<OUTVstat> ::= OUTPUT<spaces><varname>

<OUTPstat> ::= PRINT<spaces>'<text>'

<NEWLstat> ::= NEWLINE

<zerostat> ::= ZERO<spaces><varname>

<incstat> ::= INC<spaces><varname>

<jmpstat> ::= JMP<spaces><label>

<movstat> ::= MOV<spaces><varname>,<varname>

<decstat> ::= DEC<spaces><varname>,<label>

<varname> ::= <letter>|<varname><digit>|<varname><letter>

<vsep> ::= <CR>|{<text>}<vsep>|<CR><vsep>|<spaces><vsep>
where CR is an implementation of carriage return/linefeed

<text> ::= <text><char>|<char>

<char> ::= any ASCII char except { } '

<spaces> ::= b|b<spaces>
where b represents a space

The | symbol represents OR
The definition restricts labels and variables so that they cannot start with a digit.

Level 3 Develop designs and test software components (7266/7267-301) 11

A sample program

BEGIN
 { filename TEST.CPL }

{The syntax in this program is correct as defined for the language}

{ A program to multiply 2 positive integers input into variables
 NUM1 and NUM2. The multiplication is done by using multiple additions.
 The value in NUM1 is added to RESULT for the number of times in NUM1 }

 NEWLINE
 PRINT 'This program will multiply 2 positive integers'
 NEWLINE
 NEWLINE
 PRINT 'Input first number'
 INPUT NUM1
 NEWLINE
 PRINT 'Input second number'
 INPUT NUM2
 ZERO RESULT { set RESULT to 0 }
 MOV NUM2,STORE

{Store the contents of the variable NUM2 in the variable STORE }

LOOP1: DEC NUM1,ENDP
 DEC NUM2,ENDP { test if initial values = 0 }
LOOP2:
 INC RESULT { Increase RESULT by 1 }
 DEC NUM2,LOOP3 { If NUM2 = 0 then exit loop }
 JMP LOOP2 { If NUM2 not = 0 repeat loop }
LOOP3:
 MOV STORE,NUM2

{ Restore the value from STORE to NUM2 }

 JMP LOOP1 { Jump to repeat loop1 }
ENDP:
 NEWLINE
 PRINT 'Result = '
 OUTPUT RESULT { Output the result from RESULT }
 NEWLINE
 HALT
END

Note that when entering text in the Editor window a tab can be entered by using the CTRL + TAB
keys.

Level 3 Develop designs and test software components (7266/7267-301) 12

 Source code

 READ

 separate words/strings

S Lexical Analysis

Y
M Lexical records
B
O Syntax Analysis
L
 Lexical records
T
A Execute program
B
L
E

The source code file is read and for each line, comments are removed, a comma is replaced by a
space and each word or string in the line is separated. The word in the line is checked to make sure
that it is a valid identifier and then stored in the symbol table. The subscript for the string array is
stored in the lexical record and the string is stored in the string array.

Symbol table
Reserved words are hashed into the symbol table each time the compiler is run using the same
algorithm as is used to search for and insert identifiers into the symbol table.

Level 3 Develop designs and test software components (7266/7267-301) 13

Published by City & Guilds
1 Giltspur Street
London
EC1A 9DD
T +44 (0)20 7294 2468
F +44 (0)20 7294 2400
www.cityandguilds.com

City & Guilds is a registered charity
established to promote education
and training

