

Lessons 1 to 3: Complex DC networks

Suggested Teaching Time: 3.5 hours per session

Learning Outcome: Understanding complex DC networks

Торіс	Suggested Teaching	Suggested Resources
IntroductionComplex DC	Introduction to the unit: contents, aims and objectives and assessment structure. Adopt a practical approach wherever possible, to support and develop the learners understanding through linking theory to a substantial practice bias towards the recognition and analysis of circuit parameters. Computer simulation and analysis of circuits is a fundamental requirement of modern	Books: Hughes, T., <i>Electrical and</i> <i>Electronic Technology</i> , 10th Edn 2008, Revised by J.
networks	 electronic design and should be encouraged. 1.1 Model an equivalent circuits, comprising of resistor-semi-conductors. Recap on learning outcomes at the end of the session. 	Hiley, K. Brown, I. MacKenzie-Smith. Pearson Prentice Hall. ISBN 978-0- 13-206011-0
	 Start the session with a recap on previous session outcomes. 1.2 Evaluate the performance limits of series, parallel, and combined series-parallel networks for current, power transfer under design conditions, supported by simulated design package. 	Bird, J., <i>Electrical and Electronic Principles and Technology</i> , 4th Ed 2010, Newnes. ISBN 978-0-08-089056-2
	Recap on learning outcomes at the end of the session.	Simulation software:
	Start the session with a recap on previous session outcomes.	Multisim, Proteus
	1.3 Evaluate circuit performance, for the quality of its circuit components, power supply, signal input, circuit tolerance under variable conditions such as temperature , voltage , power supply , current , ripple , step change , through a series of practical observations.	Test equipment and components
	Recap on learning outcomes at the end of the session.	

Lessons 4 to 7: RLC circuits and alternating wave formsSuggested Teaching Time: 3.5 hours/per sessionLearning Outcome: Understanding the response of RLC circuits to alternating wave forms

Торіс	Suggested Teaching	Suggested Resources
The response of RLC circuits to alternating wave forms	 Start the session with a recap on previous session outcomes. 2.1 The RLC circuit forms the basis of filter design, allowing or rejecting a particular range of frequency. Therefore, it is essential for any engineer to be able to model dynamic RLC circuits for series, parallel, series-parallel combinations. Recap on learning outcomes at the end of the session. Start the session with a recap on previous session outcomes. 	Book: Bird, J., <i>Electrical Circuit</i> <i>Theory and Technology</i> , 4th Edn 2010, Newnes. ISBN 978-1-85617-770-2
	 2.2 Analyse frequency responses of tuned RLC circuits, harmonics, sub- harmonics, second harmonic, third harmonics within series, parallel, series-parallel combinations. Recap on learning outcomes at the end of the session. 	

Lesson 8: RLC circuits and alternating wave forms

Suggested Teaching Time: 3.5 hours/per session

Learning Outcome: Understanding the response of RLC circuits to alternating wave forms

Торіс	Suggested Teaching	Suggested Resources
The response of RLC circuits to alternating wave forms	 Start the session with a recap on previous session outcomes and introduce the impact of power factor correction on AC electrical power systems; defined as the ratio of the real power flowing to the load, to the apparent power of a given circuit. 2.3 Analyse power factor correction requirements of given industrial applications. Recap on learning outcomes at the end of the session. 	Book: Bird, J., <i>Electrical Circuit</i> <i>Theory and Technology</i> , 4th Edn 2010, Newnes. ISBN 978-1-85617-770-2 Internet: www04.abb.com/global/se itp/seitp202.nsf/0//\$file/v ol.8.pdf

Lessons 9 to 11: Multi-port networks

Suggested Teaching Time: 3.5 hours/per session

Learning Outcome: Understand performance of multi-port networks

Торіс	Suggested Teaching	Suggested Resources
The response of RLC circuits to alternating wave forms	 Lessons: 9 and 10 Start the session with a recap on previous session outcomes, and provide an overview of the impact of transients. 2.4 Evaluate the transient effect on RLC circuits through calculations and circuit simulation. Recap on learning outcomes at the end of the session. Lesson 11 Start the session with a recap on previous sessions involving transients, outlining the practical investigations to be covered within this lesson. 2.5 Evaluate the practical use of transient effect through practical investigations. Recap on learning outcomes at the end of the session. 	Book: Bird, J., <i>Electrical Circuit Theory</i> <i>and Technology</i> , 4th Edn 2010, Newnes. ISBN 978-1-85617-770-2 Simulation software: Multisim, Proteus Test equipment and components Internet: www.nptel.ac.in/courses//pdf/L- 11(GDR)(ET)%20((EE)NPTEL).pdf

Lesson 12 to 19: Multi-port networks

Suggested Teaching Time: 3.5 hours/per session

Learning Outcome: Understand performance of multi-port networks

Торіс	Suggested Teaching	Suggested Resources
Performance of multi-port networks	 Lessons 12 and 13 Start the session with a recap on previous session outcomes on transients, outlining the outcomes of coming lessons on three port networks. 3.1 Derive input and output equations for three port networks Recap on learning outcomes at the end of the session. 	Books: Bird, J., <i>Electrical Circuit</i> <i>Theory and Technology</i> , 4th Edn 2010, Newnes. ISBN 978-1-85617-770-2
	 Lessons 14 and 15 Start the session with a recap on previous session outcomes 3.2 Analyse the output conditions of three-port networks in relation to the inputs for waveforms, voltage, current, frequency and phase shift Recap on learning outcomes at the end of the session. 	Hughes, T., <i>Electrical and</i> <i>Electronic Technology</i> , 10th Edn 2008, Revised by J. Hiley, K. Brown, I. MacKenzie-Smith. Pearson Prentice Hall. ISBN 978-0-
	 Lessons 16 and 17 Start the session with a recap on previous session outcomes. 3.3 Convert circuit values of three port networks using different parameters comprising Z (impedance model), Y (admittance model), h (hybrid model) and g (inverse hybrid model) Recap on learning outcomes at the end of the session. 	13-206011-0 Simulation software: Multisim, Proteus
	 Lessons 18 and 19 Start the session with a recap on previous session outcomes. 3.4 Solve problems involving attenuation of three-port networks. Recap on learning outcomes at the end of the session. 	

Lessons 20 to 23: Electrical systems modelled as two-port networks

Suggested Teaching Time: 3.5 hours/per session

Learning Outcome: Understand how to analyse electrical systems when modelled as two-port networks

Торіс	Suggested Teaching	Suggested Resources
Analysing electrical systems when modelled as two-port networks	 Lessons 20 and 21 Start the session with a recap on previous session outcomes. 4.1 Explain the parameters used in two-port models using Z (impedance model); Y (admittance model) and h (hybrid model); using elementary matrix algebra. Recap on learning outcomes at the end of the session. Lessons 22 and 23 Start the session with a recap on previous session outcomes. 4.2 Explain the deriving of input and output equations for parameter models such as Z (impedance model); Y (admittance model); Y (admittance model) and h (hybrid model); elementary matrix algebra. Recap on learning outcomes at the end of the session. 	Books: Hughes, T., <i>Electrical and</i> <i>Electronic Technology</i> , 10th Edn 2008, Revised by J. Hiley, K. Brown, I. MacKenzie-Smith. Pearson Prentice Hall. ISBN 978-0-13-206011-0 Bird, J., <i>Electrical and</i> <i>Electronic Principles and</i> <i>Technology</i> , 4th Ed 2010, Newnes. ISBN 978-0-08- 089056-2

Lessons 24 and 25: Electrical systems modelled as two-port networks

Suggested Teaching Time: 3.5 hours/per session

Learning Outcome: To be able to analyse electrical systems when modelled as two-port networks

Торіс	Suggested Teaching	Suggested Resources
Analysing electrical systems when modelled as two- port networks	 Lessons 24 Start the session with a recap on previous session outcomes. 5.1 Convert circuit values using parameters such as Z (impedance model); Y (admittance model) and h (hybrid model); elementary matrix algebra from different models. Recap on learning outcomes at the end of the session. Lessons 25 Start the session with a recap on previous session outcomes. 5.2 Solve problems involving gain at low frequency; mid-band; high frequency of two-port model networks. Recap on learning outcomes at the end of the session. 	Books: Hughes, T., <i>Electrical and</i> <i>Electronic Technology</i> , 10th Edn 2008, Revised by J. Hiley, K. Brown, I. MacKenzie-Smith. Pearson Prentice Hall. ISBN 978-0- 13-206011-0 Simulation software: Multisim, Proteus Test equipment and components