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1 Series

Arithmetic and Geometric progressions

AP Sn:u+(a+d)+(a+2d)+~~~+[a+(n—l)d]:g[Za—i—(n—l)d]

1_ n
G.P. Sn:a+ar+ar2+---+ar"*1:al_rr, <Soo_ir

for |r] < 1>
(These results also hold for complex series.)

Binomial expansion

(1+x>n:1+nx+n(nzl_l)x2+n(n_ls)'(n_z)x:’)_’_...

If n is a positive integer the series terminates and is valid for all x: the term in x” is "C,x" or (r> where "C, =
n!
rl(n—r)!
n objects without replacement. When 7 is not a positive integer, the series does not terminate: the infinite series is

convergent for |x| < 1.

is the number of different ways in which an unordered sample of 7 objects can be selected from a set of

Taylor and Maclaurin Series

If y(x) is well-behaved in the vicinity of x = a then it has a Taylor series,

dy wu?d?y u®d’
y(x)=yl@a+u)=ya)tu= + 5775 + 3 ded

dx = 2! dx? o

where u = x — a and the differential coefficients are evaluated at x = a. A Maclaurin series is a Taylor series with
a=20,
B dy x2d%y x*d3y
Y =y g g P arae T

Power series with real variables

2 n

e* :1+x+%+---+%+--- valid for all x
x2 .x3 ' x"
1n(1+x):x—?—f—?—k---—}—(—l)"*l;—k--- valid for -1 < x <1
ix —ix 2 4 6
Ccos X v . +2e —1—%—1—% %—i— valid for all values of x
) eix efix x3 X5 .
sin x — A al + 50 + valid for all values of x
2 T T
- 243 < .5 3 _ =
tan x —x+3x + 15x + valid for 5 <x< 5
35
tan ' x :x—g—i-g— valid for -1 <x <1
1x* 1.3%°
sin"'x :x+§%+r%+-~ valid for -1 <x <1

See next page
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Integer series

N
1

Sn =1+2+3+---+N:%

1

N
zn2:12+22+32+“.+N2:N(N—i-lé(ZN—i—l)

1

N 2 2
Zn3=13+23+33+~~~+N3:[1+2+3+---N]2:4N(N4+1)

1

S (—1)! 11 1 _

; " :1—§+§—Z+---zln2 [see expansion of In(1 + x)]
S (= 1,1 1

;(Zn—l :1_§+5_§+"':g [see expansion of tan ™' x]
il_l“rl‘i‘l“ri‘i‘ —7-[_2

~u2 47916 6

J N(N +1)(N + 2)(N

S n(n+1)(n+2) = 12342344 -+ N(N + 1)(N + 2) = YLD ~ )(N +3)

1

This last result is a special case of the more general formula,

N . .
;n(n+1)(n+2)...(n+r): N<N+1)(N+2>;4<2N+ JIN+7+1)
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2 Vector Algebra

If i, j, k are orthonormal vectors and A = A,i + A,j + Ak then |A|2 = A2+ A; + A2. [Orthonormal vectors =
orthogonal unit vectors.]

Scalar product

A-B = |A||B|cos® where 6 is the angle between the vectors

By
By
B

Scalar multiplication is commutative: A- B = B - A.

= ABy+ AyB, + A.B, = [A+AyA;]

N

Equation of a line

A point r = (x, y, z) lies on a line passing through a point a and parallel to vector b if
r=a-+ Ab

with A a real number.

Equation of a plane

A point r = (x, y, z) is on a plane if either
(@)r- d= |d|, where d is the normal from the origin to the plane, or

(b) % + % + % = 1 where X, Y, Z are the intercepts on the axes.

Vector product

A xB = n|A||B|sin 6, where 60 is the angle between the vectors and # is a unit vector normal to the plane containing
A and B in the direction for which A, B, n form a right-handed set of axes.

A X Bin determinant form A X B in matrix form
i j k 0 -A;, Ay B,
Ay Ay, A, A, 0 —A B,
B, B, B —Ay Ay 0 B,
Vector multiplication is not commutative: A x B = —B x A.

5 See next page
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3 Matrix Algebra

Unit matrices

The unit matrix I of order 7 is a square matrix with all diagonal elements equal to one and all off-diagonal elements
zero, i.e., (I)ij = ¢jj. If Ais a square matrix of order n, then Al = [A = A. Also I = I
I is sometimes written as I, if the order needs to be stated explicitly.

Products
If Aisa (n x I) matrix and B is a (I x m) then the product AB is defined by
!
(AB)ij = AiBy;
k=1
In general AB # BA.

Transpose matrices

If A is a matrix, then transpose matrix A’ is such that (A”);; = (A) .

Inverse matrices

If A is a square matrix with non-zero determinant, then its inverse A ' is such that AA™' = A" 1A = .

( A_l)ij _ transpose of cofactor of A;;
Al

where the cofactor of A;;is (—1)"*/ times the determinant of the matrix A with the j-th row and i-th column deleted.

Determinants

If A is a square matrix then the determinant of A, |A| (= det A) is defined by

|A| = 2 €ijk.. A1iA2jAzk - - .
0k

where the number of the suffixes is equal to the order of the matrix.

2 x 2 matrices

IfA = (“ b) then,
c d

_ - T __[(a ¢C 71_i d —b
|A| = ad — bc A_(b d) A = |(—c a)

Product rules
(AB...N)T = NT .. .BTAT
(AB...N) '=N"1... B 1A} (if individual inverses exist)
|AB...N| =|A||B|...|N]| (if individual matrices are square)

Orthogonal matrices

An orthogonal matrix Q is a square matrix whose columns ¢; form a set of orthonormal vectors. For any orthogonal
matrix Q,

Q'=0Q", |Q| =41, QTisalsoorthogonal.
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Solving sets of linear simultaneous equations

If A is square then Ax = b has a unique solution x = A~'b if A~! exists, i.e., if |A| # 0.
If A is square then Ax = 0 has a non-trivial solution if and only if |A| = 0.

An over-constrained set of equations Ax = b is one in which A has m rows and n columns, where m (the number
of equations) is greater than #n (the number of variables). The best solution x (in the sense that it minimizes the
error | Ax — b|) is the solution of the n equations A" Ax = A"b. If the columns of A are orthonormal vectors then
x=ATb.

Eigenvalues and eigenvectors

The n eigenvalues A; and eigenvectors u; of an n X n matrix A are the solutions of the equation Au = Au. The
eigenvalues are the zeros of the polynomial of degree n, P,(A) = |A — Al|. If A is Hermitian then the eigenvalues
A; are real and the eigenvectors u; are mutually orthogonal. |A — AI| = 0 is called the characteristic equation of the
matrix A.

TrA =Y A, also|A|=]]A-
i i
If S is a symmetric matrix, A is the diagonal matrix whose diagonal elements are the eigenvalues of S, and U is the
matrix whose columns are the normalized eigenvectors of A, then
usu=A and S=UAU".

If x is an approximation to an eigenvector of A then x” Ax/(x"x) (Rayleigh’s quotient) is an approximation to the
corresponding eigenvalue.

Commutators
[A,B] = AB-BA
[A,B] = —[B,A]
(A BT =[BT, AT]
[A+ B,C]=1A,C]+[B,C]
[AB,C] = A[B,C]+[A,C]|B
[4,[B,C]] + [B, [C, A]] + [C, [A, B]] = 0

7 See next page
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4 Vector Calculus

Notation

¢ is a scalar function of a set of position coordinates. In Cartesian coordinates z
¢ = ¢(x,y,z); in cylindrical polar coordinates ¢ = ¢(p, ¢, z); in spherical

polar coordinates ¢ = ¢(r,0, ¢); in cases with radial symmetry ¢ = ¢(r). ~
A is a vector function whose components are scalar functions of the position
coordinates: in Cartesian coordinates A = iA, + jA, + kA;, where A, A, A,
are independent functions of x, y, z.

I
\
T h /|
: :
. . im0 ) d | 0o 0 |
In Cartesian coordinates V (‘del’) =i Py +7 aerkaZ =3y ‘ y

|

i ~ ,O | /

L Jz | 2 7

VA — — ~/

grad ¢ = Vo, divA=V-A, curl A=V x A

Identities
grad(¢1 + ¢2) = grad ¢ + grad ¢, div(A; + Ap) = divA; + div A,
grad(¢p1¢2) = ¢1 grad ¢ + ¢ grad ¢y
curl(A, + A,) = curl A; + curl A,
div(¢A) = ¢divA + (grad ¢) - A, curl(¢pA) = pcurl A + (grad¢) x A
div(A; X Az) = Ay - curl Ay — A; - curl A;
curl(A; X Ay) = A1 divA; — Axdiv A; + (A, - grad)A, — (A - grad)A,
div(curlA) =0, curl(grad¢) =0
curl(curl A) = grad(div A) — div(grad A) = grad(div A) — V?A

grad(A; - Ay) = Ay X (curl Ay) + (A; - grad)A; + Az x (curl Aq) + (A, - grad) A
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Grad, Div, Curl and the Laplacian

Mathematical Formula booklet

Cartesian Coordinates

Cylindrical Coordinates

Spherical Coordinates

Conversion to

X=pcosep Yy=psing z=z

x=rcos@sind y=rsingpsind

Cartesian n
Coordinates z=rcosf
Vector A A+ Ayj+ Ak AP+ Ay + A2 AT+ AgB + A,
. op op . JIPp op. 1d¢p_.. I op.. 1dp~ 1 d¢p
Gradlerlthb a— +a—y]+a— a—pp—‘-E%(P‘l—a—ZZ yr‘l— ;%6 rsin@%qa
1 9(*A)) 1 0Agsinf
Divergence 0A,  dAy | 0A; 19(pA,) n 104, n 0A, 2 or rsin® 00
V-A ox ay 0z o dp o 0p 0z 1 94,
rsin @ W
. 1. . 1. ~
i j ok -p ¢ -z 1 - 1(7)
5 3 3 P P r*sin@ rsinf r
o o g oz ¥ % 3
x Ay Az A, pA, A, A, rAg 1A,sind
10 [ ,0 1 9 (. 9
. = (r=]+ =— [ sinf=
Laplacian 2P ¢ N %P 19 ( 8(1)) 4 1 0%¢ N ¢ | rPor \ or r? sin 0 00 90
V¢ ox? 8y2 0z° pop P dp p* dp*  9z2 1 %

2 sin’ 0 a—(p2

See next page
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5 Complex Variables

Complex numbers

The complex number z = x + iy = r(cos 8 + isin 8) = rel®2" where i> = —1 and # is an arbitrary integer. The

real quantity r is the modulus of z and the angle 6 is the argument of z. The complex conjugate of zis z* = x —iy =

r(cos@ —isin®) =re 9 22" = |z)* = x® + 47

De Moivre’s theorem

(cos@ +isin@)" = " = cosnB + isinnd

Power series for complex variables.

2 n
e’ —ldzb b convergent for all finite z
2! n!
3 5
i L for all finite z
sin z =z 30 + 50 convergent for all finite
2 4 .
cosz =1- 51 + TR convergent for all finite z
2 7
In(l1+z)=z- Stz principal value of In(1 + z)
This last series converges both on and within the circle |z| = 1 except at the point z = —1
tan~!z —z—i+i—~~~
7 3 5

This last series converges both on and within the circle |z| = 1 except at the points z = +i.
(n=1) , nn-1)(n-2) 4

a o 3! o
This last series converges both on and within the circle |z| = 1 except at the point z = —1.

(1+2)" —14nz+"

10
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6 Trigonometric Formulae

cos’ A +sin?A =1
sin2A = 2sin Acos A

sec? A —tan’A =1

cos2A = cos? A —sin® A

sin(A + B) = sin Acos B 4 cos Asin B
cos(A + B) = cos A cos B F sin Asin B
tan A =tanB
tan(A + B) = 1 Ftan Atan B
sinA +sinB = 2sinA+BcosA_B
2 2
sin A —sinB = 2C0SA+BsinA_B
2 2
A+ B A—B
cos A+ cosB = 2cos i cos
2 2
A-+B A—B
cos A — cos B = —2sin ;_ sin >

Mathem

cosec’ A —cot? A =1
2tan A

tan2A = ————.
1—tan“ A

cos(A + B) + cos(A — B)

A B =
cos A cos .
sin Asin B — c08(A—B) —cos(A + B)

2
sin AcosB = sin(A + B) ‘; sin(A — B)

cos? A = LHcos24

2
SinzA = ﬂ

2
cos3 A — 3cos A + cos3A

4

sin®A = w

Relations between sides and angles of any plane triangle

In a plane triangle with angles A, B, and C and sides opposite 4, b, and c respectively,

a b
sinA  sinB  sinC

a?> =b*> 4+ c* —2bccos A
a=">bcosC+ ccosB
b* +c* —a?
2bc
A—B a—b
2 :a—i—bCOtE

COS A =

tan

1. . 1, . 1 .
area = EabsmC = EbcsmA = EcasmB = \/s(s —a)(s—=Db)(s—c),

= diameter of circumscribed circle.

NI —

where s =

11

atical Formula booklet

(a+b+c)

See next page
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7 Hyperbolic Functions

_1 x —x\ _ x? x*
coshx—i(e + e )—1+E+4_!+...
. N P XX
sinhx = S(e' —e ™) =x+ 0+ o + -

coshix = cosx

sinhix =isinx

sinh x
tanhx =

cosh x

cosh x
cothx = —

sinh x

cosh?x — sinh?x = 1

x
sinh «
Relations of the functions
sinhx = —sinh(—x)
coshx = cosh(—x)
tanhx = —tanh(—x)
, 2 tanh (x/2) tanh x
sinhx = 5 =
1 — tanh” (x/2) /1 — tanh? x
tanhx = 1/1— sech’x

cothx =4/ cosech?x + 1
hx—1
sinh(x/2) = \/%

coshx —1 sinh x
h(x/2) = =
tanh(x/2) sinh x coshx +1

sinh(2x) = 2sinh x cosh x

cosix = cosh x

sinix = isinh x

1
sechx =
cosh x
1
cosechx = —
sinh x

For large positive x:
ex
cosh x ~ sinhx — N
tanhx — 1

For large negative x:

—X

. e
coshx ~ —sinhx —

tanhx — —1

Mathematical Formula booklet

valid for all x

valid for all x

_ 1

sechx = sech(—x)
cosech x = — cosech(—x)
cothx = —coth(—x)
1 h? (x/2
coshx — + tan 2(x/ )
1 — tanh” (x/2)
sechx =1/1— tanh®x

cosechx =1/ coth’x — 1

V11— tanh? x

h 1
cosh(x/2) =4/ %

2tanh x

tanh(2%) = - s

cosh(2x) = cosh? x + sinh? x = 2 cosh®x — 1 = 1 4 2sinh? x

sinh(3x) = 3sinh x + 4sinh® x

_ 3tanhx + tanh® x

tanh(3x
(3%) 1+ 3tanh? x

cosh 3x = 4 cosh® x — 3 cosh x

12
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sinh(x £ y) = sinh x cosh y & cosh x sinh y

cosh(x £ y) = cosh x cosh y & sinh x sinh i

_ tanhx + tanhy
tanh(x £ y) = 1+ tanhxtanhy

1 1

sinh x + sinh y = 2sinh E(x + y) cosh E(x —vy)  coshx + coshy = 2cosh %(x + y) cosh %(x —v)
1

sinhx — sinh y = 2 cosh Q(x + y) sinh %(x - ) coshx — cosh y = 2sinh %(x + y) sinh %(x —v)

1+ tanh (x/2) iy

inhx £ coshx=-——+""2 =
sinhx &+ coshx = o T tanh(x/2) e
tanhx £ tanhy = sinh(x+y)
coshxcoshy
sinh(x + v)

cothx £ cothy =+ sinh xsinh

Inverse functions

L1 X X+ V2 +a?
sinh E:hl L

for —oco < x <

cosh™! g =1In <x+ax2—az> forx > a
tanh ! g = éln (Z i— i) for x? < a?
cothflgzéln (ijg) for x* > a?
sechlzzln<z+ Zi—l) forO<x<a
cosech™ g =In (Z f; + l) forx #0

13 See next page
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8 Limits
n‘x" — 0asn — oo if [x| < 1 (any fixed c)

x"/n! — 0asn — oo (any fixed x)

(1+x/n)" — e“asn — oo, xInx — 0asx — 0

=g(a) = en imm:f/(a) "Hopital’s rule
If f(a) =g(a) =0 th }Hag(x) 7(a) ('Hopital le)

14
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9 Differentiation

u\’  u'v—ud
(uv)' = u'v 4+ ud', (;) = Tuv
(uo)™ = uMy + nu VoM 4 4 1CuY) ™) Leibniz Theorem
where "C, = (n) = n
r ri(n —r)!
% (sinx) =cosx % (sinhx) = coshx
% (cosx) = —sinx % (coshx) =sinhx
%(tan x) =sec’x %(tanh x) =sech?x
% (secx) =secxtanx % (sechx) = —sechxtanhx
%(cotx) = — cosec® x %(coth x) = —cosech?x
% (cosecx) = — cosec x cot x % (cosechx) = — cosech x coth x

15 See next page
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10 Integration

Standard forms

—

2

N

+ | =

=

N
(o
=
Il
-
&
:s\

\
N
+
o

_
N
| ] =
=
N
Q.
=
Il
|
-
[
=]
=
L
|
~—
+
a
Il
N‘ —
—_
7N

—
S}
—
N
Q.
=
Il
|
|
0
o
&
of
I
N—
+
o
Il
N
—_
=]

/ X dr — -1 1
(xziaz)" 2(n—1) (xzj:az) -

x 1
- “In(x* +a?
/xziazdx 2n(x a‘) +c

1
[
1
/7dx:1n(x+\/x2j:a2>+c
VX2 £ a?

X
— dx
/\/xzzl:a2

=vVx2ta2+c

/\/az —x2dx = % [x\/az —x24+a’sin”! (E)} +c
. a

16

/xe’”‘ dx = e** (
a

aZ

/lnxdx =x(Inx—1)+c¢
x 1

)+

Mathematical Formula booklet

forn # —1

forx®> <a

forx* >a

forn #1
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© 1
/o Ar 0+ dx = mcosec pm forp <1
1 /m

" cos(x?) d =/w' ) dx ==/ 2
/0 cos(x”) dx ; sin(x”) dx 5\ 3

/Oo exp(—x2/20%) dx = 0V2m

—00

0 1x3x5x---(n—1)0""V2r for n > 2 and even
/ x"exp(—x%/20?) dx =

o 0 forn > 1 and odd
/sinxdx = —cosx+¢ /sinhxdx = coshx +¢
/cosxdx =sinx +¢ /coshxdx =sinhx +¢
/tanx dx = —In(cosx)+c /tanhx dx =In(coshx)+c
/cosecx dx = In(cosec x — cotx) + ¢ /cosechx dx = In [tanh(x/2)] + ¢
/secx dx =In(secx +tanx) + ¢ /sechx dx =2tan !(e") +¢
/cotx dx =In(sinx)+c /cothx dx =In(sinhx)+c
/sin mxsinnx dx = sin(m —n)x _ sin(m + n)x if m* # n?

2(m —n) 2(m+n)
_sin(m—n)x  sin(m +n)x e 2, 2

/cosmxcosnxdx— 2(m =) 20m+ 1) +c ifm* #n

Standard substitutions

If the integrand is a function of: substitute:
(a®> — x*) or /a2 — x2 x =asin6or x = acos6
(x* + a?) or V/x2 + a2 x =atanfor x = asinh0
(x* —a?) or v/x2 — a2 x =asecforx =acoshod

If the integrand is a rational function of sin x or cos x or both, substitute ¢ = tan(x/2) and use the results:

. 2t 1— ¢ 2 dt
siny = —— cos x d
1+t

T 142 142

If the integrand is of the form: substitute:

dx o,
/(ax+b)\/px+q prrq=u

/ dx ax+b:1.
u

(ax +b)\/px?>+qx+r

17 See next page
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Integration by parts

b b
/udv:uv —/vdu

Differentiation of an integral

b

a

If f(x, ) is a function of x containing a parameter « and the limits of integration a and b are functions of « then

d he db da @ g
a/u(“) flx, ) dx = f(b,e) = — f(a,0) +/a<a> o f(xa) dx.

Special case,

d X
= | dy= f).
Dirac 6-“function’

S(t—1) = %r /_O:o expliw(t — )] dw.

If f(t) is an arbitrary function of f then /Oo S(t—1)f(t) dt = f(1).
5(t) = 0ift £0, also/ s(t) dt =1

Reduction formulae
Factorials

n=nn-1)mn-2)...1, or=1.

Stirling’s formula for large n:  In(n!) ~ nlnn — n.

Forany p > —1, /Oo xPe  dx = p/oo xP~le ™ dx = pl. (—1)! =V, (12)! = V7, etc.
0 0
L q p'q!
For any p,q > —1,/0 xP(1—x)Tdx = RS

Trigonometrical

If m, n are integers,
n—1
m+n

m—1
m-+n

/2 /2 /2
/ sin™ @ cos” 6 df = / sin™ 260 cos" 0 d0 = / sin™ 6 cos" 26 do
0 0 0

and can therefore be reduced eventually to one of the following integrals

/2 1 /2 /2 /2 e
/ sin@ cos 0 do = —, / sin0do = 1, / cos6do =1, da0-="
0 2 0 0 0 2
Other
IfI, = /OO x"exp(—ax?) dx then I, = uI Iy = LT L = L
n — 0 p n — 2a n—2s 0—2 (X’ 1—2“-

18
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11 Differential Equations

Diffusion (conduction) equation

L -
E—KVI])

Wave equation

1y
2o

V2

Bessel’s equation

x2 d?y + x%

avy 2oy
dx? dx+(x m)y =0,

solutions of which are Bessel functions J,,(x) of order m.

Series form of Bessel functions of the first kind

x© (1 k x/2 m+2k
EOEA k!)(;;iiz)!

k=0

The same general form holds for non-integer m > 0.

(integer m).

19
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Laplace’s equation

Viu=0

If expressed in two-dimensional polar coordinates (see section 4), a solution is
u(p, @) = [Ap" + Bp "] [Cexp(ing) + D exp(—ing)]

where A, B, C, D are constants and n is a real integer.

If expressed in three-dimensional polar coordinates (see section 4) a solution is
u(r,0, ) = [Ar' + Br-*V]p"[Csinme + D cos me]

where | and m are integers with | > |m| > 0; A, B, C, D are constants;

|
7d(cis 9)} Pi(cos )

is the associated Legendre polynomial.

P"(cos 8) = sin"l @ {

P(1) = 1.
If expressed in cylindrical polar coordinates (see section 4), a solution is

u(p, ,z) = Ju(np)[Acos me + Bsinme] [Cexp(nz) + D exp(—nz)]

where m and n are integers; A, B, C, D are constants.

20
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12 Functions of Several Variables

Ifp=f(x,yz2...) then 99 implies differentiation with respect to x keeping v, z, . . . constant.

ox
B B1) ) ap ¢ d¢

when the variables kept

Yy

where x,1,z,... are independent variables. B_d) is also written as B_d) or B_d)
dx dx ox

constant need to be stated explicitly.

R0 R0

If ¢ is a well-behaved function then = etc.
oxdy  Jdyox

It = flx,y),

(5),- (a}%' (5), &), (). -

o

Taylor series for two variables

If ¢(x, y) is well-behaved in the vicinity of x = a, y = b then it has a Taylor series

_ _ ¢ 0 1[0 ’P P
¢(x,y)—d7(a+u,b+v)—d>(a,b)+uax +vay +2! (u P +2uvaxay+v 5 +

where x = a + u, y = b + v and the differential coefficients are evaluated atx =a, y=1»>

Stationary points

L . j o I ’o Py PP .
A function ¢ = f(x, y) has a stationary point when x "y 0. Unless o o axdy 0, the following
conditions determine whether it is a minimum, a maximum or a saddle point.
. O’ ¢
Minimum: ﬁ >0, or E)—yz >0, o 32(13 azd) N ( azd) >z
2 2 5,2 9,2 Jx 0
Maximum: B_(f <0, or a—(f <0, Jx dy xaoy
ox Y
o V0T (P
Saddle point: 2 a—yZ < < o ay>
’p P ¢ . . . : .
f—=—= = 0 the character of the turning point is determined by the next higher derivative.

ox*  9y* 0dxdy

Changing variables: the chain rule

If = f(x,y,...) and the variables x, y, . .. are functions of independent variables u, v, .. . then

dp  dpox  dp Iy
3~ 9xou  3yau
dp  dpax  dPdy
3 ~axdo T 3y

etc.
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Changing variables in surface and volume integrals — Jacobians

If an area A in the x, y plane maps into an area A’ in the u, v plane then

o ox
/Af(x,y) dx dy = /A/f(u,v)] dudv where | = g_; g_;
ou Jv
The Jacobian [ is also written as géz' Z ; . The corresponding formula for volume integrals is
Ju Jdv Jw
/f(x,y,z)dxdydz:/ f(u,v,w)]dudvdw  wherenow ] = Wy 9y 9y
v 14 ou Jdv Jw
= 9 %
Ju dv  Jw

22
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13 Fourier Series and Transforms

Fourier series

If y(x) is a function defined in the range —7t < x < 7 then
M M
y(x) R co+ Y, Cucosmx + Y sy sinmx

m=1 m=1

where the coefficients are

1 i
co = Z[ﬂy(x) dx
Cm = = /7T y(x) cos mx dx

s

Sm = l/ y(x) sinmx dx

-7
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with convergence to y(x) as M, M' — oo for all points where y(x) is continuous.

Fourier series for other ranges

Variable t, range 0 < t < T, (i.e., a periodic function of time with period T, frequency w = 27/T).

y(t) = co+ Y cmcosmwt + Y sy sin mwt
where
w T

w [T d
= o ; y(f) dt, Cm:E/o y(t) cosmawt dt,

Co

Variable x, range 0 < x < L,

2mmx 2mmx

y(x) & co+ Y cmcos + Y smsin

where

1 2 L 2mmx
co = f/o y(x)dx, cu= Z/o y(x) €os —— dx,

23

w

T
G == —/ y(f) sinmewt dt.
7T Jo

s —E/L (x)sinzmmc
m=T ) Y L

dx.

See next page
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Fourier series for odd and even functions

If y(x) is an odd (anti-symmetric) function [i.e., y(—x) = —y(x)] defined in the range —m < x < 7, then only
sines are required in the Fourier series and s,, = % / y(x)sinmx dx. If, in addition, y(x) is symmetric about
0

/2

x = m/2, then the coefficients s,, are given by s,, = 0 (for m even), s,, = % / y(x)sinmx dx (for m odd). If
0

y(x) is an even (symmetric) function [i.e., y(—x) = y(x)] defined in the range —t < x < 7, then only constant

. o . . 1 /7 2 .
and cosine terms are required in the Fourier series and ¢y = - / y(x) dx, cm = = / y(x)cosmx dx. If, in
0 0

addition, y(x) is anti-symmetric about x = g, then ¢y = 0 and the coefficients c,, are given by ¢,, = 0 (for m even),
4 /2
Cm = — / y(x) cosmx dx (for m odd).
0

[These results also apply to Fourier series with more general ranges provided appropriate changes are made to the
limits of integration. ]

Complex form of Fourier series

If y(x) is a function defined in the range —7t < x < 7 then

M . 1 7 )
y(x)~ Y Cue™, Cu= 2—/ y(x)e ™ dx
M 7t

—TT

with m taking all integer values in the range +M. This approximation converges to y(x) as M — oo under the same
conditions as the real form.

For other ranges the formulae are:
Variable t, range 0 < t < T, frequency w = 2m/T,

o] . T .
y()) = 3 Cue™, Cy= o= [ y(t)e ™" dt.
= 0

Variable x’, range 0 < x’ < L,

X : ’ L : ’
y(x/) — Z Con el2mmx /L, Cp = % / y(x/) o i2mmx /L dx’.
peS 0

Discrete Fourier series

If y(x) is a function defined in the range —7t < x < 7 which is sampled in the 2N equally spaced points x,, =
nx/N [n=—(N—-1)...N], then

y(xn) = co + c1co8x,; + c2€082xy, + -+ - 4+ cn—1cos(N — 1)x, + cy cos Nx,

+ s18inx, + spsin2x, + -+ - + sy_1 sin(N — 1)x, + sy sin Nx,,

where the coefficients are
Co = % Zy(xn)
cm:%z‘y(xn)cosmxn (m=1,...,N—1)
N = %\] Y y(xy) cos Nx,,
sm:%z]/(xn)sinmxn (m=1,...,N—1)

1 .
SN = 5y Y y(xn) sin Nx,,

each summation being over the 2N sampling points x,.

24



9209-501

Fourier transforms
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If y(x) is a function defined in the range —oo < x < oo then the Fourier transform y(w) is defined by the equations

— 1 RPN iwt
v =5 [ Flw)e da,

i) = [~ ynear

If w is replaced by 27tf, where f is the frequency, this relationship becomes

v = [~ e ay,

If y(t) is symmetric about t = 0 then
y(t) = l/ y(w) cos wt dw,
0

s
If y(t) is anti-symmetric about t = 0 then

y(f) =

y(

/OO y(t) e 2t dt.

w) = 2/Oo y(t) cos wt dt.
0

y(t) = %/ Y(w)sinwt dw,  y(w) = 2/ y(t) sinwt dt.
0 0
Specific cases
Y y
a
t N "
-T +7 \\/ \/
y(t)=a, |t|<T y , ~ _ . Sinwt _ .
=0, |t|>1 ("Top Hat’), y(w) =2 o - 2at sinc(wT)
where sinc(x) = smx(x)
Y Yy
—T +T
y(t) =a(={t|/), |t < (“Saw-tooth’), Y(w) = 2_11(1 — cos wT) = at sinc? (ﬂ)
~ ¢ [t > 7 w’t 2

Y

t

y(t) = exp(—t*/t3) (Gaussian),

y
L .

§(w) = toy/Texp (w3 /4)

~

y(t) = f(t) e (modulated function), Y(w) = f(w — wo)

y(f) = i 5(t — mt) (sampling function)

m=—o00

Y(w) = i S(w —2mn/7)

n=—o0o
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Convolution theorem
TF 2(t) = /:: 2()y(t — 7) dr = /:: 2(t—7)y(r) dr = x(t) * y(t) then Z(w) = F(w) F(w).

Conversely, xy = X .

26
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14 Laplace Transforms

If y(t) is a function defined for t > 0, the Laplace transform ¥(s) is defined by the equation

7) = £y} = [ eyt at

Function y(t) (t > 0) Transform ¥(s)
5(t) 1 Delta function
o(t) % Unit step function
" n!
t gn+1
1 1 us
v 2\
t P \/E
s
efﬂt 1
(s+a)
. w
sin wt &+ a2
s
cos wt &+ )
sinh wt 2 fwz)
s
cosh wt =)
ety (1) s +a)
y(t—1) 6t - 7) e y(s)
dv
ty(t) -5
dy
y s5(s) — y(0)
dny n— _ on—1 _ on—2 % _ dn_ly
“ yts) — (o) -2 | [T
; _
[ ytx) dr v
0 s
t
/ x(7) y(t —7) dr
‘ x(s) y(s) Convolution theorem

/Otx(t — 1) y(7) dt

[Note that if y(t) = 0 for t < 0 then the Fourier transform of y(t) is y(w) = y(iw).]
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15 Numerical Analysis

Finding the zeros of equations

If the equation is y = f(x) and x, is an approximation to the root then either

Xl = Xp — ]J:,((J;”)) (Newton)

Fon) — fxur)

are, in general, better approximations.

O, Xpi1 = Xy — fxy) (Linear interpolation)

Numerical integration of differential equations

If dy _ f(x,y) then

dx
Yn+1 = Yn + hf(x0, yn) whereh = x,41 — xp (Euler method)
Putting v, = Yn + hf(Xn, yn) (improved Euler method)
h{f (xn, yn) + f (X041, Y3i1)]

then  yni1=yn + 5

Numerical evaluation of definite integrals
Trapezoidal rule

The interval of integration is divided into # equal sub-intervals, each of width /; then
b 1 1
[ ) s e @)+ )+ f) 4o 3 0)
whereh = (b —a)/nand x; = a + jh.

Simpson’s rule

The interval of integration is divided into an even number (say 27) of equal sub-intervals, each of width h =
(b—a)/2n; then

/ﬂbf(x) dx ~ g [f(a) +4f(x1) + 2f(x2) + 4f (x3) + -+ + 2f (x2u-2) + 4 (x2n-1) + f(b)]
Gauss’s integration formulae

1 n
These have the general form / y(x) dx =~ Y ciy(x:)
—1 1

Forn=2: x;==05773; ¢; =1,1 (exact for any cubic).
Forn=3: x; =—0-7746,0-0,0-7746; c¢; = 0-555,0-888,0-555 (exact for any quintic).
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